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Correlation of Response Spectral Values for Multicomponent

Ground Motions

by Jack W. Baker and C. Allin Cornell

Abstract Ground-motion prediction (attenuation) models predict the probability
distributions of spectral acceleration values for a specified earthquake event. These
models provide only marginal distributions, however; they do not specify correlations
among spectral accelerations with differing periods or orientations. In this article a
large number of strong ground motions are used to empirically estimate these cor-
relations, and nonlinear regression is used to develop approximate analytical equa-
tions for their evaluation. Because the correlations apply to residuals from a ground-
motion prediction, they are in principle dependent on the ground-motion prediction
model used. The observed correlations do not vary significantly when the underlying
model is changed, however, suggesting that the predictions are applicable regardless
of the model chosen by the analyst. The analytical correlation predictions improve
upon previous predictions of correlations at differing periods in a randomly oriented
horizontal ground-motion component. For correlations within a vertical ground mo-
tion or across orthogonal components of a ground motion, these results are believed
to be the first of their kind.

The resulting correlation coefficient predictions are useful for a range of problems
related to seismic hazard and the response of structures. Past uses of previous cor-
relation predictions are described, and future applications of the new predictions are
proposed. These applications will allow analysts to better understand the properties
of single- and multicomponent earthquake ground motions.

Introduction

Spectral acceleration (Sa) values of earthquake ground
motions are widely used in seismic hazard analysis and eval-
uation of structural response. Relatively little work has been
done, however, to measure the joint distributions of multiple
simultaneous spectral acceleration values. In this article, the
authors measure correlation coefficients of spectral acceler-
ation values to gain insight into these joint distributions and
to facilitate other research. Correlations are presented for
spectral acceleration values of a single ground-motion com-
ponent at two differing periods and also for spectral accel-
erations of orthogonal components (horizontal/horizontal or
horizontal/vertical) at two periods.

This analysis was performed in recognition of the many
potential applications of the results. Several predictions have
been developed previously for correlations of spectral ac-
celeration values of a single ground-motion component, and
past uses of those models are mentioned in the following
text. The models for spectral accelerations of orthogonal
components are new, and so several potential applications
are described.

Motivation

Knowledge of correlation of spectral values has been
used in several past studies to gain insight into seismic haz-
ard and structural performance. Several past uses of the type
of models presented here are discussed in this section, and
potential future applications will be discussed later.

Conventional probabilistic seismic hazard analysis
(PSHA) (Kramer, 1996) provides the mean annual rate of
exceeding a specified value of a single ground-motion pa-
rameter, such as spectral acceleration at a given period.
These hazard analyses can be repeated for spectral acceler-
ation at several periods and presented simultaneously as uni-
form hazard spectra. But these uniform hazard spectra, being
the locus of results from a suite of marginal hazard analyses
for individual spectral values, should not be interpreted as
providing any knowledge about the joint occurrence of spec-
tral values at differing periods. To obtain knowledge about
the joint or simultaneous occurrence of spectral acceleration
at multiple periods, it is necessary to perform a vector-valued
probabilistic seismic hazard analysis (VPSHA) (Bazzurro
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and Cornell, 2002). This analysis is a direct extension of
traditional PSHA, using the same information about the mag-
nitudes, locations, and recurrence rates of earthquakes and
the same ground-motion prediction (attenuation) models.
The only additional information requirement is knowledge
of the joint distribution of the spectral values for a given
magnitude and distance. Logarithmic spectral acceleration
values have been observed to be well represented by the
normal distribution marginally, so the mild assumption that
pairs of values are well represented by the joint normal dis-
tribution (and/or that the conditional distributions of one
given the other are normal) is probably a reasonable one,
but has not been investigated as yet to the authors’ knowl-
edge. Under this assumption, only correlation coefficients
between spectral values at two periods are needed to define
the joint distribution and proceed with VPSHA. The models
presented in this article will provide improved predictions
of these correlation coefficients, furthering the development
of the vector-valued probabilistic seismic hazard analysis.
Once a vector-valued PSHA has been performed, structural
engineers can use this new information to improve the effi-
ciency of probabilistic performance assessments of struc-
tures (e.g., Baker and Cornell 2004, 2005a). Because engi-
neers are provided with more information about the spectral
content of the ground motions occurring at a site, they are
able to increase the precision of their structural response
analyses.

Correlation of spectral acceleration values also arises
implicitly in the development of ground-motion prediction
models. The seismologists who develop these models often
average the (log) spectral acceleration values of two perpen-
dicular horizontal components of a ground motion and use
these averaged data for fitting regression lines. This aver-
aging decreases the noise in the data, allowing for more ac-
curate estimates of the model parameters. Thus, PSHA cal-
culations using these ground-motion prediction models
provide mean exceedance rates for averaged spectral accel-
eration values, or more precisely for the geometric mean of
the two horizontal components. But structural engineers of-
ten do not perform this averaging across components, which
results in an inconsistency between PSHA and structural
analysis. The work of the seismologist and engineer can be
properly reconnected, however, once knowledge of corre-
lations of spectral acceleration values in perpendicular
ground-motion components is known (Baker and Cornell,
2006).

In addition to averaging across perpendicular compo-
nents, averaging spectral accelerations across a range of pe-
riods is sometimes also performed, with a similar goal of
reducing the variability of the resulting ground-motion in-
tensity parameter for a given magnitude and distance (e.g.,
Pacific Gas & Electric, 1988; Shome and Cornell, 1999;
N. A. Abrahamson, A. Kammerer, and N. Gregor, personal
comm., 2003). With this work, knowledge of correlations of
spectral accelerations is again needed, to quantify the effect
of the averaging procedure.

A measure of ground-motion intensity proposed by Cor-
dova et al. (2001) is a function of spectral acceleration at
two periods. This measure was found to be useful for pre-
dicting response of the structure under consideration. A cus-
tom ground-motion prediction model was needed to com-
plete the assessment of the structure, and was derived from
an existing model by making use of an estimate of correla-
tion between spectral acceleration values at the two periods
of interest.

In addition to these past applications, there are several
easily envisioned future applications that make use of the
new information in this article regarding correlations across
multiple components of ground motion. Examples are pre-
sented below, after the development of the predictive equa-
tions.

Note that there are other studies of earthquake ground
motions that at first glance might appear similar to this work,
but are in fact not related. For example, Penzien and Watabe
(1975) observed that temporal cross-correlations of ground-
motion accelerations at an instant in time are approximately
zero along specified principle axes. That work does not im-
ply anything about the phenomenon examined in this article:
the correlation of peak spectral values (i.e., frequency con-
tent measures) at differing frequencies and orientations.

Analysis Procedure

Record Selection

The results presented in this study were derived empir-
ically from a strong-motion data set based on worldwide
recordings of shallow crustal earthquakes. The records for
this study were taken from the PEER Strong Motion Data-
base (2000). Records were selected based on the following
criteria:

1. The site was classified as stiff soil: U.S. Geological Sur-
vey (USGS) class B-C or Geomatrix class B-D.

2. The recording was made in the free field or the first story
of a structure.

3. All three components (two horizontal and one vertical)
were available and had high-pass filter corner frequencies
less than 0.2 Hz and low-pass filter corner frequencies
greater than 18 Hz.

4. The earthquake magnitude was greater than 5.5.
5. The source-to-site distance was less than 100 km.

The recordings were left oriented as recorded rather than
rotated into fault normal and fault parallel components, so
they have effectively random orientations with respect to
fault direction. This is analogous to the record orientations
used to develop typical ground-motion prediction models.
The Next Generation Attenuation project will produce a rec-
ord library and predictive models that treat fault normal and
fault parallel ground motions separately. When that project
is completed it will be useful to compute correlations for
fault normal and fault parallel ground motions separately,
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but at present only randomly oriented ground motions are
considered.

A total of 469 records from 31 earthquakes met the
selection criteria, each consisting of three components of
ground-motion recordings. Of the 469 records, 202 were
from the 1999 Chi-Chi, Taiwan, earthquake. The Chi-Chi
records were removed from the initial analysis to ensure that
the results would not be excessively influenced by any pe-
culiarities of the records from this single earthquake. The
Chi-Chi records were later used to cross-validate the predic-
tive equations.

Computation of Correlations

Using the 267 remaining three-component records, cor-
relations were computed for the two horizontal and vertical
components. At this point, the variable for which the cor-
relation is estimated should be defined more clearly. The
logarithmic spectral accelerations of the three ground-
motion components can be represented by the following
model:

ln Sa (T) � f (M,R,T,h) � r (M,T)e (T) (1)x H H x

ln Sa (T) � f (M,R,T,h) � r (M,T)e (T) (2)y H H y

ln Sa (T) � f (M,R,T,h) � r (M,T)e (T), (3)z V V z

where x and y are used to denote the two horizontal direc-
tions of the recording, and z is used to denote the vertical
direction. The functions fH (M, R, T, h) and fV (M, R, T, h)
are mean ground-motion predictions for the horizontal and
vertical logarithmic response spectral values, respectively.
These predictions are a function of the earthquake magnitude
(M), distance (R), period (T), and other parameters (h), such
as the local soil conditions and faulting mechanism. These
mean ground-motion predictions are deterministic, given the
input parameters. The terms rH(M, T) and rV(M, T) account
for the observed standard deviation of the logarithmic hor-
izontal and vertical spectral accelerations, respectively. The
standard deviations are observed to depend on the magnitude
of the earthquake and the period of interest. Finally, the ran-
dom variables ex(T), ey(T), and ez(T) account for the random-
ness of the observations. Because the other terms in equa-
tions (1) through (3) have already accounted for the means
and standard deviations of logarithmic spectral acceleration,
the e terms have means of zero and unit standard deviations.

The f(M, R, T, h) and r(M, T) functions are completely
defined by previously published ground-motion prediction
models. What is not defined by standard ground-motion pre-
diction models is the correlation between e terms at different
frequencies or for different components. For example, the
correlation between the e values of the two horizontal com-
ponents of a given record is of interest: . The e val-qe (T),e (T)x y

ues of a record also vary as the period varies, and so the
correlation of the e values of a single component of a record

at two periods is also of interest: . Finally, oneqe (T ),e (T )x 1 x 2

might be interested in the correlations between two com-
ponents at two differing periods: . These correla-qe (T ),e (T )x 1 y 2

tion values are estimated in this article.
According to equations (1) through (3), the computed e

values will vary somewhat for a given record depending on
the ground-motion prediction model chosen. That is, ln
Sa(T) of a record is given and f(M, R, T, h) and r(M, T) vary
slightly among models, and so the e(T) value of a record
must also vary among models to maintain equality. The cor-
relations of e values, however, were observed to be insen-
sitive to the ground-motion prediction model considered.
Correlations were computed here by using the model of
Abrahamson and Silva (1997), but the results were found to
be nearly identical when other models (specifically, Boore
et al., 1997; Campbell, 1997) were compared.

Once correlations of the e values have been determined,
we note that ln Sa(T) is simply a linear function of e(T), with
no other sources of uncertainty. Therefore, the correlation
between, for example, ln Sax(T) and ln Say(T) (for a given
record) is equal to the correlation between ex(T) and ey(T).
Thus, the procedure used here is to compute the e values for
all records, to remove the effect of magnitude, distance, etc.,
from the variation in observed spectral values. Correlations
can be computed for these e values, which are then appro-
priate to represent the correlations between ln Sa values for
a given magnitude, distance, etc. For the same reason, the
predictions can be used to represent logarithmic spectral ve-
locity or spectral displacement. In general, the correlation of
ln Sax(T) and ln Say(T) is also a reasonable approximation
for the correlation between Sax(T) and Say(T) (Liu and Der
Kiureghian, 1986). In applications such as vector-valued
PSHA, however, it is often the logarithms of response spec-
tral values that are used in the joint distributions, so the more
precise correlation between ln Sax(T) and ln Say(T) is suffi-
cient in many cases.

To estimate correlation coefficients, we use the maxi-
mum likelihood estimator, sometimes referred to as the Pear-
son product-moment correlation coefficient (Neter et al.,
1996):

n

¯ ¯(A � A)(B � B)� i i
i�1

q̂ � , (4)A,B n n
2 2¯ ¯(A � A) (B � B)� i � i�i�1 i�1

where A and B are the random variables of interest (e.g.,
ex(T) and ey(T)), Ā and B̄ are their sample means, Ai is the
ith observation of variable A, and n is the total number of
observations (records). We perform this correlation com-
putation for each pair of orientations (horizontal/horizontal
in the same direction, horizontal/horizontal in perpendicular
directions, vertical/vertical, and vertical/horizontal) and for
each pair of periods of interest (75 periods between 0.05 and
5 sec). The matrix representing correlations for all combi-
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Figure 1. Effect of smoothing on the empirical correlation matrix for horizontal
epsilons in perpendicular directions at two periods (T1 and T2). (a) Before smoothing.
(b) After smoothing.

nations of the 75 periods is most compactly displayed using
a contour plot as a function of the periods T1 and T2 (e.g.,
Fig. 1).

Before performing further analysis, the correlation co-
efficients estimated using equation (4) were smoothed by
using a simple averaging with correlation coefficients in a
nearby neighborhood of periods to remove some of the noise
in the estimates and make the underlying patterns in the cor-
relation matrix clearer. A comparison of contours of the cor-
relation matrix before and after smoothing is displayed in
Figure 1.

Nonlinear Regression

Nonlinear least-squares regression was utilized to con-
dense the data from a large empirical correlation matrix into
a relatively simple predictive equation. Functional forms
were chosen based on inspection of the correlation matrices,
and coefficients for the functions were determined by using
nonlinear regression. Correlation coefficients estimated from
empirical data have nonconstant standard errors that depend
on the true underlying correlation coefficient. For this rea-
son, minimizing the squared error between the empirical cor-
relation matrix and the predictive function would not be the
optimal criteria for fitting the predictive function (i.e., fitting
a correlation coefficient of 0.9 with an estimate of 0.8 is a
worse error than fitting a correlation coefficient of 0.1 with
an estimate of 0). For this reason the Fisher z transformation
(Neter et al., 1996) was applied to the correlation coeffi-
cients:

1 1 � q
z � ln , (5)� �2 1 � q

where q is an estimated correlation coefficient and z is the
transformed data with a constant standard error. Simple

least-squares regression could then be applied to these z val-
ues. The coefficients for the prediction equations were se-
lected such that the squared prediction errors were mini-
mized over the range of periods of interest:

2n n
1 1 � q 1 1 � q̂ (h)i, j i, jmin ln � ln , (6)� � � � � �� �2 1 � q 2 1 � q̂ (h)h i�1 j�1 i, j i, j

where qi, j is the empirical correlation coefficient at the pe-
riod pair (Ti, Tj) and i, j(h) is its predicted value using theq̂
functional forms shown below with a vector of coefficients
h. The resulting models are strictly empirical and thus should
not be extrapolated beyond the range over which they were
fit (periods between 0.05 and 5 sec, earthquake magnitudes
between 5.5 and 7.6, and distances between 0 and 100 km).

Results

The results of these analyses are presented in the form
of simple equations. They are broken into three separate
cases, presented individually in the next sections.

Cases at a Single Period

Correlations between response spectral values with the
same period but differing orientations are presented first. The
correlation between horizontal orthogonal e values at the pe-
riod T is estimated by the equation:

q � 0.79 � 0.023 • ln (T) . (7)e ,ex y

The predictions from this function and the empirical corre-
lations from the data set are displayed in Figure 2. By using
the bootstrap to resample ground-motion records (Efron and
Tibshirani, 1993), the slope of the regression line was found
to be statistically significant, with a P-value of 0.001.
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Figure 2. Correlation coefficients for perpendic-
ular horizontal epsilons at the same period. Empirical
results, the prediction from equation (7), and the cor-
relations implied from the ratios of standard devia-
tions in Boore et al. (1997) and Spudich et al. (1999).

Figure 3. Correlation coefficients between hori-
zontal epsilons and vertical epsilons at the same pe-
riod. Empirical results and the prediction from equa-
tion (8).

The correlation between a horizontal e value and a ver-
tical e value at the period T is estimated by the constant:

q � 0.63 . (8)e ,ex z

A regression fit was performed with a prediction as a func-
tion of T, but the slope was not statistically significant and
so the prediction is a constant value for all periods. The
empirical correlations from the data set and the predicted
value are displayed in Figure 3.

Cases with Differing Periods but
the Same Orientation

When the two periods of interest differ, more complex
functional forms are needed. The correlation between the e
values of a single horizontal ground motion component at
two differing periods is estimated by the function:

p
q � 1 � cos � 0.359e ,e �x x �2

T Tmin max
� 0.163I ln ln , (9)(T ) �min�0.189 �0.189 Tmin

where I(Tmin�0.189) is an indicator function equal to 1 if Tmin

� 0.189 second and equal to 0 otherwise, implying that the
form of the equation is simply 1 � cos(a � b ln (Tmax/
Tmin)) for periods larger than 0.189 sec. The variables Tmin

and Tmax are used to denote the smaller and larger of the two
periods of interest, respectively. The empirical correlations
from the data set and the predictions from equation (9) are
displayed in Figure 4a and b, respectively. Note that both
the empirical data and this prediction imply that correlation

does not always decrease with increasing separation of pe-
riods (e.g., the correlation between Sa values at {Tmin � 0.05
sec, Tmax � 1 sec} is greater then the correlation at {Tmin

� 0.2 sec, Tmax � 1 sec}). The authors see no obvious
reason for this phenomenon, but it is seen clearly in the data.

Although equation (9) was fit for e values of individual
components, it is equally valid for e values of geometric
mean spectral acceleration values. This is shown both the-
oretically and empirically in Baker and Cornell (2005b, ap-
pendix B). The equation could also be used to approximately
represent the correlation of inter-event e values (which are
of interest for modeling losses to portfolios of spatially dis-
tributed buildings), but the agreement is not as good in this
situation. The definition of inter-event e values can be found
in Abrahamson and Silva (1997).

The correlation between the e values of a vertical ground
motion component at two different periods is estimated by
the function:

1.4T Tmax max
q � 1 � 0.77 ln � 0.315 ln . (10)e ,e � �z z T Tmin min

A comparison of this prediction with the empirical correla-
tion coefficients is shown in Figure 5.

Cases with Differing Periods and Differing
Orientations

For correlations of e values between two horizontal
components in perpendicular directions, it was hypothesized
that perhaps the correlation coefficient could be represented
as a product of the correlation due to perpendicular orien-
tation and the correlation due to differing periods. The model
of equation (7) was used to represent the perpendicular ori-
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Figure 4. Correlation contours for horizontal epsilons in the same direction at two
periods (T1 and T2). (a) Smoothed empirical results. (b) The prediction from equation
(9). (c) The prediction from Abrahamson et al. (personal comm., 2003). (d) The pre-
diction from Inoue and Cornell (1990).

Figure 5. Correlation contours for vertical epsilons in the same direction at two pe-
riods (T1 and T2). (a) Smoothed empirical results. (b) The prediction from equation (10).
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entations, evaluated at , the geometric meanT � T T� min max

of the two periods of interest, and the model of equation (9)
was used to represent the correlations at differing periods.
The resulting product-form equation is:

q � (0.79 � 0.023 • ln T T )�e ,e min maxx y

p
• 1 � cos � 0.359 � 0.163I (11)(T )� � min�0.189� 2

T Tmin maxln ln .� ��0.189 Tmin

A comparison of this prediction with the empirical correla-
tion contours is shown in Figure 6. This form fits the em-
pirical results well and agrees with equation (7) in the special
case Tmin � Tmax. This “product of correlation coefficients”
form implies that a Markov-process-like relationship exists,
where ex(T1) and ey(T2) are conditionally (linearly) indepen-
dent given either ex(T2) or ey(T1) (Ditlevsen, 1981, p. 339).
Approximate conditional independence is observed in both
the empirical data and in equation (11) (making the approx-
imation .q � q � qe ( T T ),e ( T T ) e (T ),e (T ) e (T ),e (T )� �x 1 2 y 1 2 x 1 y 1 x 2 y 2

The same procedure was used to predict the correlations
of epsilons between a horizontal and a vertical component
of a ground motion at differing periods. The estimate of
equation (8) at the geometric mean of the two periods was
multiplied by a term with the functional form of equation
(9). In this case, the coefficients of equation (9) did not pro-
vide a good fit to empirical results (which was expected be-
cause the coefficients are not associated with vertical mo-
tions), so two coefficients were re-estimated using nonlinear
regression (the additional improvement from refitting all co-
efficients was negligible). The final estimate is given by:

q � (0.64 � 0.021 • ln T T )�e ,e min maxx z

p Tmax• 1 � cos � ln (12)� ��� 2 Tmin

Tmin0.29 � 0.094I ln .(T )� ��min�0.189 �0.189

This prediction is compared with empirical results in Figure
7. One notable feature of Figure 7a is that the contours are
not symmetric about the line T1 � T2. That is, the correlation
between Sa of the horizontal component at T1 with the Sa
of the vertical component at T2 is not necessarily equal to
the correlation of the Sa of the horizontal component at T2

with the Sa of the vertical component at T1. When the em-
pirical correlations from the primary dataset were compared
with the empirical correlations from the Chi-Chi dataset,
however, variations between the two indicated that any
asymmetries in the empirical correlations were likely due to
sampling variability rather than to some underlying trend.
For this reason, the form of equation (12) is left such that
predictions are symmetric about the line T1 � T2.

Among the horizontal/vertical correlations, certain pe-
riod pairs will be of more engineering interest than others.

For instance, periods of vibration of buildings are typically
much shorter in the vertical direction than the horizontal
direction. Using a simple estimate of 0.1 sec for the vertical
period of a typical building, it would be interesting to know
the correlation of vertical Sa values at 0.1 sec with horizontal
Sa values at a range of periods (corresponding to varying
horizontal periods of vibration). This is shown in Figure 8
for both the empirical and predicted correlations.

For all of these predictions, several checks were per-
formed. The positive definiteness of the predicted correlation
matrices (when computed for a large array of periods si-
multaneously) was verified. A joint correlation matrix con-
sisting of predictions in all three directions simultaneously
was also found to be positive definite. This is a required
property of a correlation matrix, and is necessary if one
needs the joint distribution of Sa at many periods simulta-
neously (e.g., the “simulation of response spectra” applica-
tion following). In addition, it was verified that the empirical
correlations do not depend on magnitude or distance. This
was done by taking windows of magnitude or distance val-
ues and comparing the computed correlation coefficients as
the window moved to different magnitude or distance val-
ues. No trends were seen, and so the preceding models were
left functionally independent of magnitude and distance.
Supporting calculations for these conclusions can be found
in Baker and Cornell (2005b, appendix B).

Some general observations can be made from the pre-
ceding data and analytical predictions. When both periods
are the same, the correlation between the Sa values of two
perpendicular horizontal components is roughly 0.8. For
frame-type buildings, the first two periods of vibration in the
same axis typically have a ratio of approximately 3:1. Spec-
tral acceleration values at these two periods are often used
by engineers (e.g., in response spectrum analysis; Chopra,
2001), and we see that if the periods are greater than 0.189
sec, the correlation coefficient between these two Sa values
is approximately 0.6. When considering two periods with a
ratio of 3:1 in orthogonal horizontal directions, we can use
the Markov approximation and estimate the correlation co-
efficient as 0.8 * 0.6 � 0.48. When considering vertical
ground motions, if we assume that the vertical period of
interest is 0.1 sec and the horizontal period of interest is 0.5
to 1 sec (for midrise buildings) then we see that the corre-
lation coefficient is approximately 0.3 to 0.4. If we define
the correlation distance as the ratio of periods Tmax/Tmin such
that the correlation coefficient between the two is e�1 �
0.37, then the correlation distance is approximately 5 for
vertical records and 6.5 for horizontal records (if Tmin

�0.189). These numbers may serve as useful rules-of-thumb
for quick estimates.

Comparisons with Previous Work

The predictions provided by equations (7) through (12)
are believed to be the first of their kind in most cases; except
for two previous models analogous to equation (9). Inoue
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Figure 6. Correlation contours for horizontal epsilons in perpendicular directions
at two periods (T1 and T2). (a) Smoothed empirical results. (b) The prediction from
equation (11).

Figure 7. Correlation contours of vertical epsilons with horizontal epsilons at two
periods (T1 and T2). (a) Smoothed empirical results. (b) The prediction from equation (12).

and Cornell (1990) proposed the following analogous
model:

q � 1 � 0.33 • ln(T /T ) . (13)e ,e max minx x

The function was fit over a period range between 0.1 sec
and 4 sec, using 64 record components. Its contours are plot-
ted in Figure 4c. This prediction agrees reasonably well with
empirical results within the range over which it was fitted,
but it would perform poorly if extrapolated to the larger
period range used by the newer models.

Another model for the correlations of epsilons at two
periods along the same component is provided by Abraham-
son et al. (personal comm., 2003):

qe ,ex x (14)
2tanh(1 � 1.32 • log (X) � 0.072(log (X)) � 0.05 � 0.5 • log ( f )) for f � 3.16 Hz10 10 10 c c

�
2�tanh(1 � 1.32 • log (X) � 0.072(log (X)) � 0.95 � 1.3 • log ( f )) for f � 3.16 Hz ,10 10 10 c c

where f1 and f2 are the larger and smaller frequencies, re-
spectively, fc � 0.5( f1�f2), and X � ln( f1/f2). The function
was fit over a range of periods between 0.03 sec and 5 sec,
using a record set similar to the one used here. The contours
of this prediction are shown in Figure 4d. It is not dramati-
cally different from that of equation (9), displayed in Figure
4b. Selected contours from Figure 4a, b, and c are overlaid
in Figure 9 to aid comparisons of the predictions. Note that
one desirable attribute missing from the Abrahamson et al.
prediction is positive definiteness when the correlation ma-
trix is computed for multiple periods simultaneously. This
violates a required property of correlation matrices as dis-
cussed previously.



Correlation of Response Spectral Values for Multicomponent Ground Motions 223

Figure 8. Correlation coefficient between vertical
epsilons and horizontal epsilons when the period in
the vertical direction is 0.1 sec.

Figure 9. Overlaid contours at four correlation
levels for the empirical correlations, the prediction
from equation (9) and the prediction from Abraham-
son et al. (personal comm., 2003).

In general, these previous models agree reasonably well
with equation (9) proposed here. Equation (9) may be con-
sidered an improvement because of its increased range of
periods as compared with the model of Inoue and Cornell
and due to its positive definiteness property, which the Abra-
hamson et al. model does not possess. Equation (9) also
produces smaller residuals than these two models when pre-
dicting correlations of either the primary record set above or
the Chi-Chi record set (which was not used to fit any of the
three models).

One additional study of spectral acceleration correla-
tions used 30 records from the 1999 Chi-Chi, Taiwan, earth-
quake (Wang et al., 2001). The results are not directly com-
parable with the work here, however, and so this work is not
considered further.

Previous work also exists that can be indirectly com-
pared with equation (7). Some ground-motion prediction
models provide standard deviations of residuals for both the
logarithmic spectral acceleration of a single horizontal com-
ponent of a ground motion, or for the geometric mean of
two orthogonal components (e.g., Boore et al., 1997; Spu-
dich et al., 1999). By examining the ratios of the two stan-
dard deviations, one can back-calculate the implied corre-
lation coefficient between the two components using the
following equation:

2 2q � 2r /r � 1 , (15)e ,e g.m. arbx y

where rg.m. is the logarithmic standard deviation of the geo-
metric mean of the two horizontal components, and rarb is
the logarithmic standard deviation of an arbitrary compo-
nent. The correlation coefficients implied by the models of
Boore et al. (1997, 2005) and Spudich et al. (1999) are dis-
played in Figure 2. These models underestimate the corre-
lation seen empirically in this study, but estimation of cor-
relations was not a goal of these studies. The value of interest
to these authors is , but a slight change in this ratio2 2r /rarb g.m.

can produce a large change in the correlation coefficient.
Given that these authors were not interested in correlations
and that the correlations calculated using equation (15) are
very sensitive to the ratio , it is perhaps not sur-2 2r /rarb g.m.

prising that there is a slight discrepancy between the direct
calculations of this article and the indirect back-calculations
from previous work.

Applications

To demonstrate the usefulness of these new predictions
and perhaps inspire new uses, several applications of the new
correlation predictions are briefly described here.

Vector-Valued Hazard Analysis for Horizontal
and Vertical Components of Ground Motion

The vector-valued hazard analysis methodology of Baz-
zurro and Cornell (2002) can now be easily applied to anal-
ysis of horizontal and vertical ground motions simulta-
neously. Consider a hypothetical two-dimensional building
frame with a first-mode period of 1 sec in the horizontal
direction and a first-mode period of 0.1 sec in the vertial
direction. Using equation (12), we estimate a correlation co-
efficient between the Sa values at these two periods of 0.30.
We assume that the building is located 8 km from a single
fault which produces only (characteristic) magnitude 6.5
earthquakes with a mean return period of 500 years. Using
the Abrahamson and Silva (1997) ground-motion prediction
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Figure 10. Contours of vector-valued probabilis-
tic seismic-hazard analysis. The contours denote the
mean annual rate of exceeding both the Savertical and
the Sahorizontal values. P.E., Probability of exceedance.

model and the correlation coefficient predicted here, we can
compute the joint distribution of horizontal and vertical
spectral acceleration values at the specified first-mode pe-
riods. Contours of that hazard are displayed in Figure 10.
Note that because of the low correlation, extreme values of
Sa are unlikely to occur in the horizontal and vertical direc-
tions simultaneously. For example, we note that a horizontal
Sa of 0.65g has a 2% probability of exceedance in 50 years,
and a vertical Sa of 0.98g has a 2% probability of exceed-
ance in 50 years. But the probability of exceeding both a
horizontal Sa of 0.65g and a vertical Sa of 0.98g simulta-
neously is only 0.65% in 50 years. This suggests that de-
signing for extreme ground motions in all directions simul-
taneously (e.g., by applying a horizontal Uniform Hazard
Spectrum and a vertical Uniform Hazard Spectrum simul-
taneously), may be more conservative than intended. If one
is primarily concerned with horizontal motions and thus uses
the 2% in 50 years horizontal Sa value, the preferred vertical
Sa design value would be that associated with the mean ln
Sa in the vertical direction, given that Sa in the horizontal
direction has exceeded 0.65g. This choice is consistent with
load combination rules used in practice elsewhere (e.g., Nor-
wegian Technology Standards Institution, 1999, pp. 17–18).
For this example the design value of the vertical Sa was
determined to be 0.66g, which is approximately 30% less
than the Sa with a 2% probability of exceedance in 50 years.

Only a single magnitude/distance pair was used in this
example for computational simplicity. Generalization of the
analysis to incorporate multiple faults with multiple mag-
nitudes and distances is merely a matter of coding the cor-
relation prediction into a vector-valued hazard analysis pro-
gram (Somerville and Thio, 2003). (As an approximation,
one can also use the dominant value of e obtained by dis-
aggregation to obtain the associated e values for other com-
ponents.) No further mathematical developments are needed.

Ground-Motion Prediction Model for the
Geometric Mean of Orthogonal Spectral
Accelerations at Two Periods

The geometric mean of spectral acceleration values in
two orthogonal horizontal directions is often computed in
ground-motion prediction models. This quantity is useful for
analyzing a three-dimensional structure subjected to ground
motions in two horizontal directions, because it describes
the intensity of ground motion in two directions using only
a single parameter (Stewart et al., 2001; Baker and Cornell,
2006). The geometric mean of spectral acceleration provided
by ground-motion prediction models uses the same period
of vibration in both directions, however, whereas a structure
commonly has different periods of vibration in its two prin-
cipal directions. Using the correlation models presented
above, one can easily develop a “custom” correlation model
incorporating the two periods of interest in a particular ap-
plication.

Ground-motion prediction models provide the fH(M, R,
T, h) and rH(M, T) terms for equation (1). We are interested
in determining an analogous equation of the form:

ln Sa (T ,T ) � f (M,R,T ,T ,h)g.m. 1 2 g.m. 1 2

� r (M,T ,T )e (T ,T ) , (16)g.m. 1 2 g.m. 1 2

where Sag.m.(T1, T2) is the geometric mean of two orthogonal
horizontal spectral accelerations at two periods T1 and T2.
The function fg.m.(M, R, T1, T2, h) is the mean value of ln
Sag.m.(T1, T2) and rg.m.(M, T1, T2) is the standard deviation.
Recognizing that ln Sag.m.(T1, T2) � 1/2(ln Sax(T1) � ln
Say(T2)), the mean and standard deviation terms can be de-
rived from existing models and the correlation predictions
presented above:

f (M,R,T ,T ,h) � 1/2( f (M,R,T ,h)g.m. 1 2 H 1

� f (M,R,T ,h)) (17)H 2

2 2r (M,T ) r (M,T )H 1 H 2
r (M,T ,T ) � �g.m. 1 2 � 4 4

q (T ,T )r (M,T )r (M,T )e ,e 1 2 H 1 H 2x y� , (18)
2

where (T1,T2) comes from equation (11). Rememberingqe ,ex y

that many ground-motion prediction models provide the
standard deviation of the geometric mean of two horizontal
Sa values, rather than the standard deviation of a single com-
ponent Sa, it may be first necessary to make the following
conversion before calculating equation (18):

22r (M,T)g.m.2r (M,T) � , (19)H 1 � qe ,ex y
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where comes from equation (7), rg.m.(M, T) is the stan-qe ,ex y

dard deviation of the geometric mean of two horizontal Sa
values (the quantity presented in most ground-motion pre-
diction models), and rH(M, T) is the standard deviation of a
single component Sa (the quantity used in equations 1, 2,
and 18). The fH(M, R, T, h) term is unchanged regardless of
whether the geometric mean or arbitrary component Sa def-
inition is adopted, so it can be taken from the ground-motion
prediction model without modification. Equations (17)
through (19) can be easily implemented in a computer code
alongside an existing ground-motion prediction, and the out-
put used in the same way as the output from any other
ground-motion prediction (e.g., for PSHA analysis). It is ex-
pected that this “custom” model and corresponding hazard
analysis will allow an engineer to increase the precision of
response analyses in cases where the structure of interest has
different periods of vibration in its two principle directions.

Simulation of Response Spectra

The correlation predictions derived above can be used
to simulate response spectra given an earthquake scenario.
For a given earthquake magnitude (M), distance (R), and
other parameters (h), the distribution of horizontal ln Sa val-
ues at a range of periods (T1, T2, . . . , Tn) can be obtained
using the model of equation (1). The mean of ln Sa(Ti) is
equal to fH(M, R, Ti, h) and its standard deviation is equal to
rH(M, Ti). The covariance of ln Sa(Ti) and ln Sa(Tj) is equal
to rH(M, Ti)rH(M, Tj) (Ti, Tj), where (Ti, Tj) is com-q qe ,e e ,ex x x x

puted using equation (9). If we again assume a multivariate
normal distribution for ln Sa values, then these means and
covariances fully define the distribution that can be used for
simulation. A comparison of empirical spectra and simulated
spectra is shown in Figure 11. In Figure 11a and b, spectra
are simulated using zero correlation and perfect correlation,
respectively. In Figure 11c, spectra are simulated using the
correlation prediction from equation (9). In Figure 11d, real
spectra from recorded ground motions are shown for com-
parison. It is clear that the results in Figure 11a and b are
not accurate representations of real record spectra, and so a
model such as that presented here is needed for accurate
simulation. Note that this simulation procedure can also be
applied to simulation of multiple-component response
spectra.

These simulated spectra may also be compared with
synthetic ground motions to verify that the spectra of the
synthetic motions show sufficient variability (or “rough-
ness”). In cases where synthetic spectra are not “rough”
enough corrective actions could be taken to increase the vari-
ability (e.g., “rough” spectra were generated in Sewell et al.,
1996).

Conclusions

Models have been presented for correlations of spectral
response values of earthquake ground motions. The models

include predictions of correlations for single-component
ground motions measured at two differing periods, and also
across orthogonal components of three-dimensional ground
motions. The predictive models improve upon previous pre-
dictions of correlations at differing periods in a single hor-
izontal ground motion. For correlations within a vertical
ground motion or across orthogonal components of a ground
motion, these predictions are believed to be the first of their
kind. It is seen that correlations of Sa at differing periods
across orthogonal horizontal components of a ground motion
can be approximated as a product of the correlation of Sa
values across differing components (at a single period) and
the correlation at differing periods (in the same component).

The predictions are presented in the form of correlations
of standardized residuals (epsilons) from established empir-
ical ground-motion prediction models. These predictions
provide information about the correlations of two logarith-
mic Sa values for a given magnitude and distance. Although
the observed residuals in principle depend on the ground-
motion prediction model chosen, the correlations do not vary
significantly when the underlying model is changed. Thus
the correlation predictions are applicable regardless of the
ground-motion prediction model used by the analyst. This
suggests that although one might repeat this exercise when
the models from the current next generation attenuation pro-
ject are released, the functional forms and even parameter
values should not change appreciably, at least for vertical or
randomly oriented horizontal components. (Correlations
among or within fault normal and fault parallel components
were not examined as part of this study, but it will be pos-
sible to examine them upon completion of the Next Gener-
ation Attenuation project.)

Several approximate “rule-of-thumb” correlation values
can be determined from the preceding models. Correlation
of orthogonal horizontal Sa values with the same period are
comparatively highly correlated (q � 0.8), whereas horizon-
tal and vertical Sa values at typical first-mode periods of
midrise buildings are less correlated (q � 0.3–0.4). Several
past and potential future applications are presented, illus-
trating that the correlations shown here are useful for a va-
riety of earthquake hazard and engineering problems. In-
creased knowledge of response spectrum correlations will
facilitate the further development of vector-valued proba-
bilistic seismic hazard analysis and allow simple modifica-
tion of existing ground-motion prediction models to develop
custom predictions for any combination of periods and ori-
entations. These applications will allow analysts to better
understand the properties of multicomponent earthquake
ground motions.

Data Source

The response spectra, magnitude, distance, and site con-
dition data for all of the ground motions studied here came
from the PEER Strong Motion Database (2000), http://
peer.berkeley.edu/smcat/ (last accessed 29 June 2005).
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Figure 11. Samples of 20 response spectra from magnitude 6.5 earthquakes with a
source-to-site distance of 8 km. The simulated spectra use means and variances from
Abrahamson and Silva (1997). (a) Simulated spectra using correlation coefficients equal
to zero between all periods. (b) Simulated spectra using correlation coefficients equal
to one between all periods. (c) Simulated spectra using correlation coefficients from
equation (9). (d) Real spectra from recorded ground motions with magnitude �6.5 and
distance � 8 km.
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